Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity
نویسندگان
چکیده
The majority of oligodendrogliomas (ODGs) exhibit combined losses of chromosomes 1p and 19q and mutations of isocitrate dehydrogenase (IDH1-R132H or IDH2-R172K). Approximately 70% of ODGs with 1p19q co-deletions harbor somatic mutations in the Capicua Transcriptional Repressor (CIC) gene on chromosome 19q13.2. Here we show that endogenous long (CIC-L) and short (CIC-S) CIC proteins are predominantly localized to the nucleus or cytoplasm, respectively. Cytoplasmic CIC-S is found in close proximity to the mitochondria. To study wild type and mutant CIC function and motivated by the paucity of 1p19q co-deleted ODG lines, we created HEK293 and HOG stable cell lines ectopically co-expressing CIC and IDH1. Non-mutant lines displayed increased clonogenicity, but cells co-expressing the mutant IDH1-R132H with either CIC-S-R201W or -R1515H showed reduced clonogenicity in an additive manner, demonstrating cooperative effects in our assays. Expression of mutant CIC-R1515H increased cellular 2-Hydroxyglutarate (2HG) levels compared to wild type CIC in IDH1-R132H background. Levels of phosphorylated ATP-citrate Lyase (ACLY) were lower in cell lines expressing mutant CIC-S proteins compared to cells expressing wild type CIC-S, supporting a cytosolic citrate metabolism-related mechanism bof reduced clonogenicity in our in vitro model systems. ACLY or phospho-ACLY were similarly reduced in CIC-mutant 1p19q co-deleted oligodendroglioma patient samples.
منابع مشابه
D-2-Hydroxyglutarate producing neo-enzymatic activity inversely correlates with frequency of the type of isocitrate dehydrogenase 1 mutations found in glioma
BACKGROUND IDH mutations frequently occur in diffuse gliomas and result in a neo-enzymatic activity that results in reduction of α-ketoglutarate to D-2-hydroxyglutarate. In gliomas, the frequency of IDH1 mutations in codon 132 increases in the order R132L-R132S-R132G-R132C-R132H with R132H constituting more than 90% of all IDH1 mutations. RESULTS We determined the levels of D-2-hydroxyglutara...
متن کاملIDH1 and IDH2 mutations as novel therapeutic targets: current perspectives
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that convert isocitrate to α-ketoglutarate. IDH1/2 mutations define distinct subsets of cancers, including low-grade gliomas and secondary glioblastomas, chondrosarcomas, intrahepatic cholangiocarcinomas, and hematologic malignancies. Somatic point mutations in IDH1/2 confer a gain-of-function in cancer cells, resulting ...
متن کاملThe potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization.
Monoallelic point mutations in cytosolic isocitrate dehydrogenase 1 (IDH1) and its mitochondrial homolog IDH2 can lead to elevated levels of 2-hydroxyglutarate (2HG) in multiple cancers. Here we report that cellular 2HG production from cytosolic IDH1 mutation is dependent on the activity of a retained wild-type IDH1 allele. In contrast, expression of mitochondrial IDH2 mutations led to robust 2...
متن کاملInhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines
Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a subset of benign and malignant cartilage tumors, gliomas and leukaemias. The mutant enzyme causes the production of D-2-hydroxyglutarate (D-2-HG), affecting CpG island and histone methylation. While mutations in IDH1/2 are early events in benign cartilage tumors, we evaluated whether these mutations play a role in malignant ...
متن کاملTargetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas.
PURPOSE Isocitrate dehydrogenase (IDH) gene mutations occur in low-grade and high-grade gliomas. We sought to identify the genetic basis of malignant phenotype heterogeneity in IDH-mutant gliomas. METHODS We prospectively implanted tumor specimens from 20 consecutive IDH1-mutant glioma resections into mouse brains and genotyped all resection specimens using a CLIA-certified molecular panel. G...
متن کامل